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Abstract - This paper presents a numerical analysis method for solving the shape identification problems
of thermoelastic fields. The square error integral between the actual thermal deformation distributions
and the prescribed thermal deformation distributions on the prescribed sub-boundaries is used as the
objective functional. The shape gradient of the shape identification problems was derived theoretically
using the adjoint variable method, the Lagrange multiplier method and the formulae of the material
derivative. Reshaping was accomplished using a traction method that was proposed as a solution to the
domain optimization problems. A new numerical procedure for the shape identification was proposed.
The validity of the proposed method was confirmed by the results of 2D numerical analysis.

1. INTRODUCTION

Boundary shape determinations, where the distributions of state functions, such as displacement or stress
on linear elastic bodies, and temperature on heat-conduction fields, are specified with prescribed distri-
butions for the purpose of improving the performance of machines and structures, are highly important
issues in mechanical and structural design. In this study, we consider a shape identification problem
which determines the boundary of the initial shape that after thermal deformation will be prescribed
to the target shape on thermoelastic solids. These shape identifications are very important problems in
the development of the machine tool with thermal deformation, and the shape design of the equipment
for the purpose of improving machining accuracy by decreasing of the thermal deformation is one of
the problems which connect with this study directly. Moreover, the establishment of such shape design
technology is also desired in the development of the precise measurement equipment in which the thermal
deformation influences error of measurement.

The thermoelastic problem is divided into two conventional problems, the weak coupled problem
and the strong coupled problem. A problem in which the temperature distribution affects deformation,
strain and stress is called the weak coupled problem. On the other hand, the types of problem to which
the temperature distribution and deformation distribution affect each other is called the strong coupled
problem. The design sensitivity analysis for thermoelastic problems was initiated by Meric[l] and Dems
and Mroz[2]. Meric[1] analyzed the sensitivity on the weak coupled thermoelastic problem for linear,
isotropic, and steady-state thermoelastic problems. Dems and Mroz[2] analyzed the sensitivity on the
weak coupled thermoelastic problem for the problem taking into account the nonlinearity of the strain
and temperature distributions. The sensitivity analysis of the strong coupled thermoelastic problem was
carried out by Tortorelli et al.[3] . Hou et al.[4] and Bobaru and Mukherjee[5] proposed the numerical
analyses methods for the shape determination problems of the linear weak coupled thermoelastic solids.
Grindeanu et al.[6] analyzed the shape optimization problems of the weak coupled thermoelastic solids
for durability, where Young’s modulus and Poisson’s ratio depend on the temperature. In their numerical
analysis examples, however, only numerical analysis results for decreasing the number of design variable
as much as possible have been reported.
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On the other hand, the present authors have also focused on the solution of shape determination
problems in fundamental single fields which do not take into consideration the coupling of the field,
such as a linear elastic body, a heat conduction field, and a flow field. In previous papers, we presented
numerical analysis methods for these shape identification problems of elastic bodies, heat-conduction
fields and flow fields in which the square error integral between the actual distributions of state functions
(displacement [7], temperature [8] [9], flow velocity [10] and pressure [11]) and the prescribed distributions
on the sub-boundaries or in the sub-domains were used as the objective functional. Reshaping was
accomplished by the traction method [12]-[14] which was proposed by one of the authors as a solution to
shape optimization problems in which the boundary value problems were defined. The traction method
is a method which consists of applying the gradient method of the distribution system which directly
uses the shape sensitivity (shape gradient) of the domain variation which is theoretically derived from
the optimization problem. In the traction method, the domain variations that minimize the objective
functional are obtained as solutions of the pseudolinear elastic problems of continua defined on the design
domains and loaded with pseudodistributed traction in proportion to the shape gradient on the design
domains. The numerical solutions of both the shape gradient and the pseudolinear elastic problems, used
for evaluation of the domain variation, can be obtained using the finite-element method or the boundary-
element method. Therefore, the traction method can be applied to complex shape determination problems
with a large number of design variables. Additionally, since this traction method is implemented by the
use of the finite element method, it is exceptionally easy to perform and offers the advantage that it is
not necessary to refine the mesh of the internal nodes of the domain.

In this study, we applied the traction method to the shape identification problem of the linear,
steady-state weak coupled thermoelastic solids. We formulate a thermal deformation prescribed problem
in which the square error integral between the actual thermal deformation distributions and the prescribed
thermal deformation distributions on the prescribed sub-boundaries on the thermoelastic solids is used as
the objective functional. The shape gradient of the shape identification problem was derived theoretically
using the adjoint variable method, the Lagrange multiplier method and the formulae of the material
derivative. Then, a numerical procedure using the finite element method for the shape identification
problem was presented. The validity of the proposed method was confirmed by the results of a 2D
numerical analysis.

2. DOMAIN VARIATION

Before formulating the shape identification problem, a method of representing domain variation using
the speed method will be discussed briefly. A more detailed explanation is given in reference [15].

Assume that a domain 2 C R”, where n = 2,3, R is the set of real numbers, and its boundary I, is
variable. One approach to describing the domain variation is to use a one-parameter family of one-to-one
mapping T5(X) : 25 X — z € (2,, where s denotes the domain variation history.

When a domain functional Jp, and a boundary functional Jp of a distributed function 1 are consid-
ered, their derivatives J and Jr with respect to s at s = 0 are given by the formulae of the material
derivative:

ng/ﬁz/)da:, jg=[2¢'dx+L¢V-de, (1)
Jp = /F $dr, Jr = /P (W + (Vo + )y V} dI, (@)

where v is an outward unit normal vector on the boundary, V,(-) = V(- )-v and  denotes the (n—1) times
of the mean curvature. The shape derivative ¢’ of the distributed function ¢ indicates the derivatives
under a spatially fixed condition. The derivative of T5(X) with respect to s given by

_ 0T,
T Os

is called the velocity because of the analogy between s and time.

V(z) (T;I(X)) , Xen ze, (3)
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3. STATE EQUATIONS OF THERMOELASTIC SOLID

In this section, the variational formulations for the linear steady-state weakly coupled thermoelastic
domain are represented.

3.1. Heat-conduction analysis

The variational form, or the weak form of the state equation of heat-conduction for the temperature ¢
using the adjoint temperature ¢ € ®, is given as

ap(9,¢) +bg(d,0) =ls() d—do€P, VYpecd (4)

where the terms ay(¢, @), by(¢, @) and l4(p) are defined by
a9(8.0) = [ kubapido,  bo(6,0)= [ hopar
o) Iy
(o) = [ Qede+ [ hogpdr+ [ gpar.
2 Iy Iy

The set @ of the temperature and adjoint temperature is given by
¢={pcH' ()| d|r, =0, [y I'}. (5)

The heat-conduction field is defined in a domain 2 with a boundary I' = I'y U I}, U4 UI;. The
temperature ¢o € H/2(I';), and the heat flux ¢ € H~/2(I;) the heat source Q € H~1(2) are given as
known functions. The boundary I}, is the heat transfer boundary obtained by the heat transfer coefficient
h € L*°(I,) and the ambient temperature ¢y € L®(I}%). k = {ki;}7 ;=1 € (L*°(£2))"*" is the thermal
conductivity tensor, and the boundary I7 is the insulation boundary. The Einstein summation convection
and partial differential notation (-); = 0(-)/0x; are used in the tensor notation throughout this paper.
The symbols L>®(£2) and H™(§2)"™ denote the space of the bounded functions and the space of the square
integrable functions until the mth derivatives, respectively.
3.2. Elastic analysis

The variational formulation for the state equation of the linear thermal elastic problem corresponding to
the displacement u = {u;}?_, € U using the adjoint displacement v € U, where thermal expansion based
on the temperature distribution ¢ is considered, is given as

as(e(u) — o, e(v)) =l (v) u—u €U, Wwel, (6)
where the terms ac(g, €), €;;(u) and l.(u) are defined by
1
oele,€) = [ Coueuesda,  ei5(u) = 515+ 5
2
l(u) = / fiu; dx + Pu; drI'.
0 I'p

The set U of the displacement and adjoint displacement is given by
U={ue H2)" |u|lr, =0, [, T} (7)

The elastic field is defined in a domain 2 with a boundary I' = I, U I'p. The displacement u, =
{uoi Y2y € (HY2(I,))™, the surface force P = {P;}2., € (H~Y/2(I'p))™ and the body force f = {fi}i-; €
(H='(£2))" are known functions, respectively. The symbols C' = {Cijui}}; ;=1 € (L®(£2))"*"™ and
a = {1 € (L®(2))"*™ are the material stiffness tensor and the thermal expansion coefficient
tensor, respectively.
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4. SQUARE ERROR INTEGRAL MINIMIZATION PROBLEM OF THERMAL DE-
FORMATION

4.1. Formulation of problem

We consider a prescribed thermal deformation problem in which the square error integral between the
actual thermal displacement u and the prescribed thermal displacement up on the prescribed sub-
boundaries I'p C I" of the thermoelastic domain (2 is used as the objective functional. This problem is
formulated as

Given M and
k, b0, q, by, &5, Q, C,uo, a, P, f: fixed in space (8)
find 02 )
that minimize FE(u—up, v —up) (10)
subject to  ag(P, @) +bg(d,0) =lg(p) ¢—do€ P, Voed (11)
ac(e(u) — pa,e(v)) =1l (v) u—upelU, VveU (12)
/ dx < M, (13)

2

where the square error integral E(z,y) is defined by
I'p

Equations (11) and (12) are the state equations of the thermoelastic problem, and eqn.(13) is volume
constraint condition.
4.2. Shape gradient

Applying the concept of the Lagrange multiplier method and the adjoint variable method, this problem
can be rendered as a stationary problem for the Lagrange functional L(¢,u, ¢, v, A):,

L(¢,u,p,v,A) =
E(u—up, u—up) — as(d,p) — bs(,9) +ls()
—ac(e(u) — da, e(v)) + L (v) + A( /ﬂ dz — M), (14)

where the nonnegative real number A is the Lagrange multiplier with respect to the volume constraint.
For simplicity, when assuming that the heat flux sub-boundary I'y, the heat transfer sub-boundary I, the
surface force sub-boundary I'r and the prescribed displacement sub-boundary I'p are invariable under
reshaping, the derivative L with respect to s is derived using eqns (1) and (2):

L =2E(u —up, u)

—ag(¢,¢") = by(¢,¢") + s (¢)

—a¢(¢,: ®) — b¢(¢l7 ®)

—ac(e(u) — pa, e(v')) + L (V')

—ac(e(u'), &(v)) + ac(¢'a, £(v))

+A( / dz — M)

2

+< Gy, V>, (15)

where (:) is the material derivative and (-)’ is the shape derivative for the domain variation of the

distributed function under a spatially fixed condition. The linear form < Gv,V > with respect to the
velocity function V is given by

<G, V>= / GuV,dr (16)
r
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G =Gy + G1A, (17)
where
Go = —Cijri(en(u) — and)ei;(v) — ki, + Qp + fiv; (18)
G, =1 (19)

Considering the stationary conditions for all ¢’ € ®, v € U, v/ € U, ¢’ € ® and A from eqn.(15),
the Kuhn-Tucker conditions with respect to ¢,u, v, ¢ are obtained as

ag(¢, @) +bg(¢,¢) =ls(¢) Vo' €@ (20)

ac(e(u) — o, e(v’)) = l.(v') W eU (21)

ac(e(v'),e(v)) =2E(u—up, v') Vi €U (22)

ag(¢', @) +by(¢', ) = ac(¢'a,e(v)) V' € P (23)

A>0, /d:ch, A(/ dz — M) =0, (24)
2 I

that indicate variational formulation for the original state equations for the temperature ¢ and displace-
ment u, the variational forms of the adjoint equations for adjoint temperature ¢ and adjoint displacement
v. The adjoint displacement v in eqn.(22) can be evaluated as the displacement by a loading of a pseudo
force 2(u — up) on the prescribed displacement sub-boundary I'p in the linear elastic domain {2. The
right side term a.(¢'c, £(v)) of eqn.(23) is rewritten as

a,s(é'a,e('u)):/ﬂS(b’da::/QCijklek;(v)aijqﬁ’d:c. (25)

Therefore, the adjoint temperature ¢ in Eq.(23) can be evaluated as a temperature by the generation of
a pseudo heat source S = Cjjxeri(v)as; in the heat conduction domain £2.

Under the condition satisfying eqns (20)-(24), the derivative of the Lagrange functional agrees with
that of the objective functional and the linear form < Gy, V > with respect to the velocity function V:

Llgupoa =< G,V > . (26)

The coefficient vector Gv in eqn.(16) has the meaning of a sensitivity relation to the domain variation
and is called the shape gradient. The scalar function G is called the shape gradient density.

Initial design
N

i
| Heat conduction analysisIFEM

Elastic analysis

FEM

Final design

l Adjoint elastic analysis IFEM
T

l Adjoint heat conduction analysileEM

! Calculation of shape gradient l

|
l Velocity analysis by traction method iFEM

Updating shape

Figure 1: Flow chart of shape identification.
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5. NUMERICAL SOLUTION TECHNIQUE

5.1. Traction method

When the shape gradient is obtained, the traction method [12]-[14] can be applied to optimize the geo-
metrical domain shape. The traction method has been proposed as a procedure for solving the velocity
Ve Dby

ac(e(V),e(y)) =~ <G, y> (27)
and
D = {V € (H'(12))"| constraints of domain variation }. (28)

Equation (27) indicates that the velocity V decreasing the objective functional is obtained as a displace-
ment of a pseudoelastic body defined in {2 by the loading of a pseudo-external force in proportion to
—Gv, under constraints on the displacement of invariable boundaries. Robustness of the traction method
against oscillating phenomena, which often occur in the moving boundary nodes of finite element models
in proportion to the negative value of the shape gradient, has been confirmed theoretically [13].

5.2. Numerical procedure

A flow chart of the shape identification system for thermoelastic solids is shown in Figure 1. The finite
element method was employed in every analysis. Shape identification analysis was performed by executing
these elements sequentially and repeatedly.

The shape gradient was evaluated using the two thermal elastic field analyses which analyze distri-
butions of the temperature ¢ and the displacement u for the original state eqns (20) and (21), and the
distributions of adjoint displacement v and adjoint temperature ¢ for the adjoint eqns (22) and (23). The
domain variation V' in eqn.(27) was analyzed using the finite element method. The Lagrange multiplier
A, determined so as to satisfy the volume constraint, can be regarded as a uniform surface force in the
external force —Gv. Therefore, it should be possible to satisfy the conditions of eqn.(24) by controlling
the magnitude of this uniform surface force A.

Lo
X2
| c Ii p
X 6 O © 0"
(a) Thermoelastic analysis (b) Velocity analysis

Figure 2: 2D Cylindrical continuum problem (quarter domain).

6. NUMERICAL RESULTS

We present the results of two numerical analyses for 2D shape identification problems using the traction
method and shape gradient derived as described in previous sections.

6.1. Cylindrical continuum

We analyzed the shape identification problem of the cylindrical 2D continuum problem as shown in
Figure 2. The quarter-symmetric domain was used in this problem. The outer surface boundary A-B was
assumed as the prescribed displacement boundary I'p. The design boundary I'yesign is the inner boundary
B-C. The central shape shown in Figure 3 was chosen to be the target shape, and the displacement
distribution on the outer surface boundary I'p was assumed to be the prescribed displacement distribution
up.
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(b) Target shape (c) Identified shape

Figure 3: Shapes with finite element meshes in cylindrical 2D continuum problem.
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Figure 4: Thermal displacement distribution /u? + u3 on boundary A-D (left side) and iterative history of objec-
tive functional (right side) in 2D cylindrical continuum problem.

For the heat conduction analysis, the outer and inner surface boundaries were assumed as the specified
temperature boundary I, where ¢ = 200°C on the boundary A-D and ¢ = 50°C on the boundary B-C.
The boundaries A-B and C-D are the insulation boundary I';. For the elastic analysis, the boundaries
A-B and C-D were assumed as the slide boundary. The boundary A-D was fixed, and the boundaries
A-B and C-D were assumed as slide boundary in the velocity analysis. For simplicity, the case we
considered had the following conditions: length of boundary A-B= 20mm, Young’s modulus 206GPa,
Poisson’s ratio 0.3, heat-conductivity coefficient k;; = kd;; =50W /m, and thermal expansion coefficient
ai; = adi; =1.2x107%m/m-°C. This problem was analyzed using a plane strain condition.

Numerical results are shown in Figures 3 and 4. Figure 3 shows a comparison for the initial shape,
target shape and identified shape with the finite element meshes. The left-hand shape shown in Figure
3 is chosen as an initial shape, and the identified shape analyzed, as the size of its area would consist of
80% or less of the initial shape area, is shown on the right-hand side of Figure 3. The left side of Figure
4 shows a comparison of the displacement distribution, which is \/u? + uZ on the outer boundary A-D
for the target shape, initial shape and identified shape. The right side of Figure 4 shows the iterative
history ratio of the objective functional E(v — up, v — up) normalized with the initial value.

On the basis of these results, it was confirmed that the value for the objective functional approached
zero, and the identified shape analyzed by the proposed method exhibits a good agreement with the
target shape shown in Figure 3.

6.2. Plate with two holes

The proposed method was applied to the shape identification problem of a plate with two holes, as shown
in Figure 5. The upper surface boundary A-D was assumed as the prescribed displacement boundary
I'p. The design boundaries I'esign are the left and right sides and also the boundaries of the two holes.
The purpose of this analysis is to determine the shape in which the thermal deformation distribution in
the zo direction at surface A-B become as uniform as possible. For simplicity, the case we considered
had the following conditions: specified temperature ¢, = 100°C on boundary A-D and 0°C on boundary
B-C; length of the boundary A-B, = 200mm; and other material properties, the same as those in the
previous problem. We analyzed two cases: the surface forces are not imposed (Case 1: P = 0), and they
are imposed (Case 2: P = 500kN) on the boundary B-C.
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Figure 5: 2D plate problem with two holes.
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Figure 7:

Thermal displacement distribution us on boundary A-D (left side) and iterative history of objective
functional (right side) in 2D plate problem with two holes (Case 1: P = 0).

Numerical results are shown in Figures 6-9 in the same manner as the results for the previous problem.
The area consists of 70% or less of the initial shape area for the Case 1 problem. In the Case 2 problem,
the area consists of the same initial shape area or less. The finite elements of the identified shapes in
Figure 6 are severely distorted. As we have described in the introduction, the traction method has the
advantage of not requiring mesh refinement for the internal nodes of the domain in the conventional-shape
optimization analyses. Therefore, in these numerical analyses, we did not use re-mesh processing. From
the right-hand sides of Figures 7 and 9, it was confirmed that the objective functional converged at the
minimum value. The left-hand sides of Figures 7 and 9 show the thermal displacement ug in the 2o
direction on the upper surface boundary A-D between the initial and identified states. From both these
results, the difference between the maximum displacement and the minimum displacement on the surface
boundary became small, and an improvement of about 40% was obtained for the initial state.
We further analyzed another problem Case 3, in which the prescribed thermal deformation distribu-
tion is not an uniform; for this case, the identified shape obtained under the conditions of Case 2 was used
as a target distribution up on the surface boundary A-D. The initial shape in Case 3 is same as that in




Case 2. The numerical results of the analysis are shown in Figures 10 and 11. From these results, it was
confirmed that the thermal displacement distribution for the identified shape exhibits a good agreement
with the target distribution up, and the objective functional approached zero, if the prescribed thermal
displacement distribution which is not uniform would be chosen as up, similar to that in Case 3.

According to the numerical results obtained for the above basic problems, the validity of the present

method was confirmed.

Figure 8: Shapes with finite element meshes in 2D plate problem with two holes (Case 2: P = 500kN).

Figure 9:

Figure 10: Shapes with finite element meshes in 2D plate problem with two holes (Case 3: P = 500kN).
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functional (right side) in 2D plate problem with two holes (Case 2: P = 500kN).

AYAVANANAN VAVAVAVAVAVYAVAVANAVAVAVAVAVAVAVAVAVAVAVAVAYAVAYS
R R R 0000000 O
R R s A Ly
RS R RO A A ROCA L X
S RS RSNARX A A0
R o
SN SRR
RATIEY
K

TATAVAVS
00

vy
&
2

N
N
AN,
SN
Y ‘gv

TAY
AN

Ay
08

o
RSO

2

\Vi
2o
A
5

(%)

S O

RSRS8O

RESEERI KR,

S
KA %

s ‘e‘gé.vi».'am&vg‘mx‘v "‘X"ﬁ‘?"ﬁé

7%
o

VAVYAVAVATAYAYA

(a) Undeformed identified shape

CONCLUSIONS

In this study, we formulated a shape identification problem in which the square error integral between
the actual thermal deformation distributions and the prescribed thermal deformation distributions on
the prescribed sub-boundaries on the thermoelastic solids is used as objective functional. The shape
gradient of the shape identification problem was derived theoretically. A numerical procedure using the
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derived shape gradient and the traction method was proposed. The validity of the proposed method was
confirmed on the basis of the results of a 2D numerical analysis.
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